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Flow along a horizontal plate near a free surface 
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Yugoslavia 

(Received 20 December 1991 and in revised form 29 September 1992) 

The problem of flow along a horizontal semi-infinite flat plate moving in its own plane 
through a viscous liquid just below the free surface is considered. The method of 
matched asymptotic expansions is used to analyse the interaction between the free 
surface and the boundary layer formed on the plate. It is found that, due to viscosity, 
small-amplitude gravity waves on the free surface can be formed. The formulae for the 
resistance of the plate containing the free-surface effect and for the lift, appearing as 
a new phenomenon, are derived. 

1. Introduction 
While investigating the broad subject of water waves, we often encounter the 

intriguing problem of the interaction between waves and the boundary layer formed on 
a body in a viscous stream. Although this wave-viscosity interaction has not, perhaps, 
been in the forefront of recent theoretical investigations, it still has great practical 
importance. For instance, in order to determine the resistance of a ship, naval 
architects face the problem in everyday practice. In fact, they avoid it by following 
Froude’s assumption (Froude 1877) that the resistance consists of two superimposed 
parts - frictional and residual resistance, the main part of the latter being the resistance 
due to waves. The methods for determining ship resistance have developed from 
Froude’s time (see e.g. Lewis 1988) but his main idea, the independent analysis of 
waves and viscosity, still has great practical value. The question is, to what extent is 
that assumption correct. 

Many authors tried to improve the predicted ship resistance by incorporating the 
neglected wave-viscosity interaction into the problem : Havelock (1939, Inui (1 957), 
Wigley (1963), Wu (1963), Maruo (1976), Mori (1979) and Stern (1986), to mention just 
a few attempts in the long history, but the problem, with its own ever-perplexing 
nature, still lies open. 

In that context, it is rather curious that a much more restricted problem, but one that 
seems important and instructive for understanding the phenomenon, has not been (as 
far as the author knows) theoretically solved. The problem in question is the flow along 
a semi-infinite horizontal plate in a stream of viscous liquid with a free surface (figure 
1). Its importance, in connection with the wave-boundary layer interaction, can be 
seen immediately. If, following Froude, we try to analyse waves and viscosity 
separately, and at first neglect viscosity, we directly conclude that such a plate would 
cause no disturbances in the oncoming horizontal stream. There would be no waves on 
the free surface, and certainly no wave resistance. On the other hand, if the liquid is 
viscous but the free surface is not present, it would be the well-known boundary-layer 
problem - for laminar flow, the classical Blasius problem (Blasius 1908). We conclude 
that in the problem under consideration (viscous liquid with a free surface), all the 
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disturbances (waves), if any, formed on the horizontal free surface would be caused by 
the effect of viscosity. Also, all the deviations from the Blasius flow are due to the 
presence of the free surface, and (as the classical solution is well known) would be easily 
traced. So the problem, in spite of the simplifications (a flat plate may seem a poor 
approximation of a ship), contains the main characteristics of wave-boundary layer 
interaction and, in addition, presents them in a simple and obvious way. The fact that 
it is a natural generalization of the classical Blasius problem, and that is suitable for 
analytical treatment, gives more significance to the problem studied. 

2. Basic equations 
The problem presented in figure 1 will now be defined more precisely. A flat 

horizontal semi-infinite plate that moves with constant velocity uo through still viscous 
liquid at a depth h under its free surface is considered. All the disturbances of the flow 
are caused entirely by the moving plate, and they are supposed to be laminar. In the 
coordinate system x,y moving with the plate the flow is, under these assumptions, 
steady and two-dimensional, governed by the Navier-Stokes equations and the 
equation of continuity : 

1 1 
F R  

uu, + vuy = - - p;  + - ( U Z Z  + UYJ, 

1 1 
F R  

uv, + vvy = - - pj  + - (uxz + vyJ, 

u, + v?/ = 0. 

The equations are presented in non-dimensional form, scales for velocity, length and 
pressure being uo, h and p o  = pgh respectively, where p is the liquid density, and g 
acceleration due to gravity. In those equations u, zi represents the velocity components, 
and F and R Froude and Reynolds numbers, defined as 

F = ui/gh, R = h lv  

where v is the kinematic viscosity. The gravitational force has been cancelled by the 
hydrostatic pressure, so p' denotes the pressure disturbance. 

The following boundary conditions must be satisfied : undisturbed flow far upstream 

u = l ,  p ' = v = < = O  for x-t-m 

(5 is the free surface disturbance); a no-slip condition on the plate 

u = v = O  for y = O ,  x>O; 

and the kinematic and dynamic conditions on the free surface 

As we are interested in the gravity wave-viscosity interaction, the capillary effects in the 
dynamic condition on the free surface are neglected. 
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FIGURE 1. Configuration of the problem. 

If the stream function $ is introduced in the usual way: 

= a$/ay, v = -ag/ax, 
these equations and the boundary conditions become 

1 1 
1c.y $XY - $x $*Y = -FP: + j j  W Y X X  + $YYY), 

$* $,x - $, k x y  = FP; + j j  ($xxx + $yux). 
1 1 

$ = y  for x+--co, 

ykY = 0, $, = 0 for y = 0, x >  0, 

for y = 1 +[(x). I $x = -Q$y 

F 
~P~-~~[x+jj(~*y-$xx-2[x$xy) = 0 

P’-c+~[($yy-$xxKx-2$xyl = 0 
F 

The problem stated above possesses nonlinear and viscous terms in the equations of 
motion and in the conditions on the free surface, so we are not able to solve it in all 
its complexity. We limit our investigation to the case of weak interaction between the 
plate and the surface, and for that reason make two more assumptions concerning 
parameters R and F. We suppose R % 1 and note that such an assumption leads not 
only to a thin boundary layer on the plate, but as Ri is proportional to h/S (where S 
is the boundary-layer thickness at the distance h from the leading edge), the assumption 
implies that the surface is far outside the boundary layer as long as x < R is satisfied. 
The other assumption we make is F I R  < 1. This makes the viscous terms in the free- 
surface conditions small enough to be neglected in the procedure that follows, leaving 
the outer flow (to the order considered) entirely inviscid in nature. 

Our aim was to make possible the use of perturbation methods, and we achieved that 
by restricting R and F, but unfortunately left the problem of strong interaction R = 
O(1) (where the viscosity would affect the whole layer between the plate and the 
surface) beyond the scope of this investigation. However, a wide variety of flows is still 
covered, as demonstrated by noting that for a plate, for example, 5 cm under the surface 
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of water, the conditions R 9 1, FIR -+ 1 would be well satisfied for the range of 
velocities uo = 2 mm/s-2 m/s. 

Although the use of the depth h as a scale, instead of an arbitrary length, does not 
restrict the analysis that follows, and is even beneficial because the result will depend 
only on two non-dimensional parameters ( R  and F ) ,  such a scaling should be carefully 
noted. The fact that h will not enter the results explicitly must not lead to the 
conclusion that the flow does not depend on it. The depth will be hidden in parameters 
R, F and non-dimensional variables throughout the paper. So, if an explicit variation 
of the flow with h is needed, either a dimensional form of the results has to be 
recovered, or the scale for length changed to an arbitrary one, and that could be (at 
every stage of the analysis) easily done. Of course, from such transformed results, the 
limit h+ cc will recover the classical flow with no free surface. 

After this necessary discussion on the parameters and scales involved, we are ready 
to start solving the above problem. Knowing the appropriate solutions with no free 
surface (see Van Dyke 1975): all the unknown functions are expanded in terms of the 
parameter 1/Ri, separately for the outer flow and for the inner flow (the boundary 
layer). For the outer flow 

1 1 
RS R 5(x) = -i 5“’(x> + - p y x )  + . . . ; 

and for the inner flow 

J 1 1 
RH P‘ = P ’ ( X ,  Y )  = 7 P ( l ) ( X ,  Y) + - p y x ,  R Y )  + . . . , 

where the inner coordinate Y = yRi is introduced. Now, to solve this problem, the well- 
known method of matched asymptotic expansions is used. Briefly, the expansions (2) 
and (3) are substituted into the equations and boundary conditions (l), terms of the 
same order are equated and the expansions that represent the same physical quantities 
are matched in the region where the outer and the inner flows overlap. In that way, 
instead of the problem defined by the equations and boundary conditions (l), the series 
of simpler problems for the unknown functions 

$ ( N ) ,  p(N+1), {(N+1),  y ( N ’ ,  P(N+1), N = 0, 1,2, ... , 

are obtained, called the first-, second-, etc. order approximations of the problem. 

3. The first-order approximation 

stream function is obtained : 
As the first-order approximation of the outer flow, the following equation for the 

V 2 $ ( 0 )  = 0, 
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with the boundary conditions 

$ ( O )  = y  for x- t -m,  

$:) = 0 for y = 1 ,  

where the conditions on the plate (1 c) have been dropped, and the conditions on the 
free surface (1 d )  have been expanded about the undisturbed state y = 1. The solution 
of the problem is obvious: 

and represents the undisturbed horizontal stream. 

p) = y ,  

The first-order approximation of the inner flow is 
pp,- y p  y(0’ + p o )  p o )  - 0 

P$) = 0, 
ZY 2 Y Y  - 9 

with the boundary conditions on the plate 

!F;) = P$? = 0 for Y = 0. ( 5 )  

y/cYo)+l for Y+m. (6)  

The third boundary condition for the equation (4a)  is obtained by matching with the 
outer flow. It follows that 

In equations (4)  and boundary conditions (5 )  and (6) we recognize the classical Blasius 
boundary-layer problem which, by introducing the new variables 

reduces to the Blasius differential equation 

with the boundary conditions : 
f”’+ff” = 0, 

AO) =f(O) = 0,  f (a3)  = 1 .  

Without going into details, just the solutions of this well-known problem for small and 
large 7 are quoted here, as they are essential for the analysis that follows: 

f(7) M $xy2, a = 0.4696 ... for 7 + 1, 

f l y )  - 7-p, p = 1.21678 ... for 7 $ 1. 

The solution obtained -the undisturbed stream for the outer flow (as if the liquid 
were inviscid), and Blasius flow for the boundary layer (as if the free surface were not 
present) - should be understood as a proof that the usual separate analysis of viscosity 
and waves is, as a first approximation of the problem, correct. So, the free 
surface-boundary layer interaction has to be looked for in the higher-order 
approximations. 

4. The second-order approximation - outer flow 
Substitution of the outer expansions (2) into the equations and boundary conditions 

( 1 )  (the conditions on the free surface (1 d )  having already been expanded about the 
undisturbed state and the conditions on the plate (1 c) dropped) yields the equations 
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with the boundary conditions 

$(')+O for x+-co, 

Matching with the first-order approximation of the inner flow gives 

where the upper and the lower sign on the right-hand side stand for t,.e upper and the 
lower side of the plate, respectively. 

There is a familiar physical interpretation of the problem stated above - it is the 
inviscid flow past a thin parabolic cylinder of nose radius p 2 / R .  But, in contrast to the 
second-order approximation of the classical Blasius problem, the free surface is 
involved. From the point of view of the water wave theory, we are dealing here with 
the waves caused by an obstacle in the steady stream. Methods for solving this type of 
water wave problem, for different shapes of obstacle, are well known (Wehausen & 
Laitone 1960). The particular one of the obstacle being a thin parabolic cylinder seems 
not to have been published yet. So, it will be analysed here briefly, while the details are 
given in Hofman (1986). We use the old ideas (see Sretenski 1977), and assume that the 
flow disturbance consists of two parts, the disturbance caused by the parabolic cylinder 
in the unbounded stream, and the correction associated with the presence of the free 
surface : 

$(1) = $(P) + $ ( W ) .  

$ ( P )  = -Psgny[(x2 + y 2 ) + + x ] ~ ,  

has to be expressed in the form of a Fourier integral. To do that, we start from the 
Fourier transform : 

FT[xiH(x)] = g! jklgexp(-ixisgnk) 

(Lighthill 1958), where H(x)  is Heaviside's function and i is the imaginary unit. The 
boundary value follows : 

The first, well-known part of the disturbance, 

m 
$( p)(x, 0) = - p(2x); H(x)  sgn y = @ sgn y [ 'gn eikx dk, 

4x5 -m k2 

and from it we deduce that 

The second part of the disturbance is also expressed in the form of an integral: 

m 

= s- @( y ,  k) eikz dx, (10) 
m 

where the unknown function @( y ,  k) is introduced. To obtain that elementary 
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FIGURE 2. Characteristic regions of the outer flow. 

solution we have to divide the flow field into the three regions (figure 2). Region I 
(x < 0) - infinitely deep flow with a free surface, where we suppose 

(1 1) @(Y,  k )  = A(k)  exp [lkl ( Y -  111; 

region II (x > 0, y > 0) - flow of slowly varying depth with a free surface, where we 
suppose 

@( y ,  k )  = A(k)  sinh ky ; (12) 

and region ZZZ (x > 0, y < 0) - infinitely deep flow with no free surface. It is elementary 
to prove that in this last region 

@( y ,  k)  = 0, p) = 0 

is valid. Consequently, in that region, the classical result for the flow over a plate in 
an unbounded stream follows (Van Dyke 1975): 

u(1) = 0, (1 3) 

that part of the flow field being not affected by the free surface. 
The procedure that follows for the other two regions is straightforward. Integrals (9) 

and (10) are substituted into the free-surface condition (8b) (using the assumptions (1 1) 
and (1 2) respectively) and the appropriate values of A(k) are found. We get 

A(k)  = sgn k + ~k in region I, 

A(k)  = -1. 

p( 1 + i) e+l 

p(1 + i) e-lkl 

47~; k% 1 - F(k- 2ie) sgn k 

in region 11, 
sgn k + Fk 

4x2 kd sinh k - F(k - 2ie) cosh k 

where, in order to satisfy the radiation condition, a small positive parameter e was 
introduced (see Lighthill 1978). It is sufficient for our purpose just to find the 
streamwise component of velocity u(') = @p), and then, by use of the interface 
condition (8c), obtain the free-surface disturbance. So, from (9), (lo), ( l l ) ,  (12) and 
(14) it follows that 

u(') = -~ p(l +i) rn (1 -Flkl)e-lkyI+(1 +Flkl)e1k1(y-2'eik~dk in region I, 
kb [ 1 - F(k - 2ie) sgn k] 4x: i-, 

47~; l-m ki [sinh k - F(k - 2ie) cosh k] 
sgn k eiks dk in region 11. p( 1 + i) rn cosh [k( 1 -y] - Fk sinh [k( 1 -y)] u( l )  = -~ 
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m = Ikl as the variable of integration. We obtain 
To evaluate (15) we divide the integrals into regions k < 0 and k > 0 and use 

where 

e f i k x  dm in region I, 
(1 - Fm) e-mlyl + (1 + Fm) 

in; [ 1 - F(m ‘f 2ie)l J I , ,  = j* 
cosh [m( 1 - y)] - Fm sinh [m( 1 - y)] efilcz 

dm in region 11. 
mi [sinh m - F(m f 2ic) cosh m] J1,P = Jo 

In region I the integrand has a pole m = 1 / F  which is, because of the small positive 
parameter c, just above the real axes for Jll and just below the real axes for J,. The path 
of integration has to be rotated into negative and positive imaginary axes, respectively. 
The pole does not contribute, so after we neglect e (which was introduced just to shift 
the pole off the path of integration) and use the relation (16), we get 

I 
(1 + F 2m2) cos (my) + (1 - F2m2) cos [m( y - 2)] - 2Fm sin [m( y - 2)] 

1 + F2m2 a(nz,r> = 

in region I. 

In region 11, the integrand has an infinite number of imaginary poles m = fik,, n = 

1,2,3, . . . , where the k, are real positive solutions of the equation 

Fk = tank, 

and, for F < 1 only, two poles m = i k , ,  where k, is a real positive solution of the 
equation 

Fk = tanh k. 

Now, the path of integration has to be rotated into positive and negative imaginary 
axes respectively. One of the real poles rn = k, (because of small positive c) is inside the 
path of integration for both integrals J1 and J, .  The imaginary poles m = ik, contribute 
to J1 and m = -ik, to J,.  By the use of relation (16) the contributions of the real pole 
to J1 and J, are added, while the contributions of the imaginary poles are cancelled. So 
(after neglecting e) we obtain 

I u(’) = b, sin (k ,  x++7c) ePmx dm for F < 1 , d m ’  

cos [m( 1 -y)] + Fm sin [m( 1 -y)] 
sin m - Fm cos m 

in region 11, d m , y )  = 

where for the first time the wave amplitude appears: 

/3(27c); cosh (k, y )  
kk [l -F/(l - F2k,2)]’ 

bW(F7Y) = 
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Finally, to find the integrals in (17) and ( 1 8 )  in the form of asymptotic expansions, the 
appropriate functions cT(rn,y) are expanded in powers of rn and the resultant series 
integrated term by term. 

In region I (ahead of the cylinder), such a procedure leads to solutions for u(l)  and 
<(l) in the form of the expansions: 

where the coefficients a,  and A ,  are 

a, = -PdZ 

a, = ~ 38d2 [ y ,  -4y ( l -  F )  - 8F+ 4F2] ,  . . ., 
16 

A ,  = - FaN(F, l), 

which, obviously, represent just a local disturbance of the flow, disappearing far ahead 
of the leading edge. 

In region I1 (over the cylinder) the situation becomes much more interesting because 
of the pole rn = k,  that exists for F < 1 only, and is physically connected to waves of 
length A,  = 2n/k,. So, in that region two different flow regimes can exist: subcritical 
( F  < l), and supercritical (F  > 1). The solutions for these regimes are 

and 

The wavenumber in (21) is defined by Fk, = tanhk,, the amplitude b, is given by (19), 
the amplitude of surface waves is B, = -Fb,(F, l), and the coefficients b, and B, are 

The flow disturbance over the cylinder consists of three separate parts: tpe local 
disturbance (the last terms in (21) and (22)),  the parabolic disturbance (the xs term), 
and, in the case of subcritical flow only, the wave disturbance of the stream. On adding 
the presence or absence of waves, there is also another change in the flow as the Froude 
number passes one. For F < 1 the parabolic part of the free-surface disturbance is a 
depression, while for F > 1 it is an elevation that follows the parabolic cylinder. Both 
differences between subcritical and supercritical flow are familiar from wa;ter wave 
theory. The stationary waves cannot exist on the water stream for u, > (gh)z (see e.g. 
Lighthill 1978), while a hump on the bottom produces a depression on the stream 
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surface for u, < (gh);, and a rise for u, > (gh);, that have exactly the forms we obtained 
(see Paterson 1983). 

All three parts of the disturbance (local, parabolic and wave) grow unboundedly in 
the case of the transcritical flow ( F  = l), where the method used is unable to give an 
acceptable solution. The reason seems clear. The present method relies on the 
assumption that a small viscosity (high R) causes a small change in the oncoming 
stream. However, as the Froude number approaches its critical value, because of the 
strong interaction between viscosity and the free surface, the presence of even a slight 
viscosity causes abrupt changes in the flow. So that basic assumption is no longer 
satisfied. 

There is another singularity in the solution obtained. The solution is not bounded 
near the leading edge of the cylinder. The explanation is similar to the one just 
mentioned, but (in contrast to the case of transcritical flow) this difficulty will be 
overcome. The unknown flow for small x will not prevent us from accomplishing the 
main goal: to obtain the resistance of the plate including the leading edge. 

Further discussion on the parabolic part of the flow disturbance seems desirable. It 
is obtained, formally, that for F < 1 the parabolic depression of the free surface would 
intersect the cylinder far downstream. Of course, the solutions (in accordance with the 
method used) are valid only for small {(x), that is for x < R. Furthermore, there arises 
the problem of the turbulent boundary layer far downstream. Keeping in mind that the 
far-downstream flow is beyond the problem treated in this paper, one still cannot avoid 
the question: what would happen to the free surface in the case of a solid parabolic 
cylinder (not the boundary layer) far down the inviscid stream? We will try to answer 
it briefly. The local Froude number 

F* = ui/gh*(x) 

(where h*(x) is local depth) grows with x for the subcritical flow, so every subcritical 
flow becomes (for large x )  transcritical, and finally, in the far downstream region, 
supercritical. There, in accordance with the solution obtained (and the physical 
reasoning) the free surface follows the growth of the parabolic cylinder. 

Leaving this far-downstream problem for some later work, let us repeat the basic 
result of the second-order approximation of the outer flow. On the free surface of a 
steady stream over a horizontal plate there exists, in the case of subcritical flow, a 
stationary wave of small amplitude that spreads far downstream. This wave tail on the 
free surface is induced entirely by the effect of viscosity. 

5. The second-order approximation - boundary layer 

equation for Y(l) that is valid on the upper side of the plate: 
By substitution of (3)  into ( I ) ,  and by the assumption !P = Y ( l ) ( x , ~ ) ,  we get an 

IVg +JU’g - 2xf’ !Pg + 2 x 7  UX,‘’ +f’ Y;) 

where the right-hand side is obtained by matching with the first two 
of the outer flow. The coefficients b,(F,O) and b,(F,O) (see (19) and 

n 

approximations 
(23)) are 

..., 
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and the parameter j introduced in (24) has the following values: j = 1 for F < 1 
(subcritical flow) and j = 0 for F > 0 (supercritical flow). The first two boundary 
conditions for (24), obtained from ( 1  c), are 

P;) = 0, P!) = 0 for q = 0. (25) 

The third condition follows by matching with the outer flow: 

To solve (24) we follow the usual methods for the higher approximations of boundary- 
layer theory (Van Dyke 1975). We assume, in accordance with the outer boundary 
conditions (26), that PI) has the form 

so that the unknown functions W,(V), Wl(q) . . . and L,(v), L,(q) . . . satisfy 

W;, Wi, W;, ..., LA, Li, ... + 1 for q + co. 

By substituting (27) into (24) and equating terms of the same powers of x,  we obtain 
two infinite systems of ordinary differential equations : 

N=0,1 ,2 ,3  ,.... (28)  I Wz+fw>-2Nf’W&+(2N+l)f”WN =-2N,  
Lg+fL;+(4N- l ) f W & - 2 ( 2 N -  l)f”WN = 4N-1, 

In the same way, from (25) and (26), we obtain the appropriate boundary conditions : 

N=0,1 ,2 ,3  ,.... I W, = Wk = 0, L,  = L; = 0 for q = 0, 
W&+l ,  L h + l  for r+co, 

From this procedure it is obvious that the functions WN(q) represent the wave 
disturbance of a Blasius boundary layer, the function L,(q) the parabolic disturbance, 
and the functions Ll(q), L,(q) ... the local disturbance near the leading edge. 

Equations (28) are independent, so they are easy to solve numerically. It was 
sufficient for our purposes to solve the first twenty-one W,. functions, and only the first 
four L,  functions, but there would be no difficulty in going further. 

So, the second-order approximation of the horizontal velocity in the boundary layer 
(on the upper side of the plate) is 

u(1) = yA1) = J  ‘b w (F ,  *) [ w; + (k,  x )  W ;  -;(/to x)2 w;: - . . .] 
d 2  

P ( W t  L; + b + 0) L; + b2K 0) L; + . . . +- 
1-F X.i X2 

Two examples of this velocity component, one for subcritical and one for supercritical 
flow (F  = 0.75 and F = 1.5), are presented in figure 3. Examples of the total horizontal 

14 FLM 252 
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FIGURE 3 .  Second-order correction for the streamwise velocity in the boundary layer for x = 2 . 5 :  
(a) subcritical flow ( F =  0.75); (6) supercritical flow ( F =  1.5). 

1 

U 

(I 
c 

r 5 '  

FIGURE 4. Total streamwise velocity in the boundary layer for x = 2.5, 1/Rt = 0.006: 
(a) subcritical flow ( F =  0.75); (b) supercritical flow (F = 1.5); (c) without the correction. 

velocity (the sum of the first- and the second-order approximations), for the same 
values of F, are presented in figure 4. We note that, for the given liquid, Fand  R define 
the exact values of h and u, according to 

h = (f5)1, u, = (gvFR);. 

So, to get a better feel for the results, we also give the dimensional values for the last 



Flow along a horizontal plate near a free surface 41 1 

1 

FIGURE 5 .  Second-order correction for the shear stress in the boundary layer for x = 2.5 : 
(a) subcritical flow ( F  = 0.75); (b) supercritical flow (F = 1.5). 

example. It corresponds to the plate travelling with a velocity of 0.589 m/s at 4.7 cm 
under the water surface for the subcritical flow, and with a velocity of 0.742 m/s at 
3.7 cm under the water surface for the supercritical flow. 

The second-order approximation of the shear stress in the boundary layer (on the 
upper side of the plate) is 

Examples of T(I), for subcritical and supercritical flows (again for the values F = 0.75 
and F = 1.5), are presented in figure 5. The total shear stress (the sum of the first two 
approximations) for the same values of F is presented in figure 6. One should note the 
characteristic increase of the stress near the plate in the case of subcritical flow. The 
example in figure 6 is given for a plate travelling with the same velocity at the same 
depth as the one in figure 4. The associated wave amplitude in these examples is 
extremely small from the point of view of water wave theory oust over a millimetre). 
Still, the increase of the stress near the plate is over 50%, exceeding, for that special 
case, even the perturbation method we used. It indicates the major effect that the 
boundary layer-free surface interaction has on the skin friction. 

We also point out that, as should be expected from the previously obtained results 
for the outer flow, all three parts of U1) and dl) (wave, parabolic and local) grow 
unboundedly as the Froude number approaches its critical value (F+ 1). 

14-2 
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FIGURE 6. Total shear stress in the boundary layer for x = 2.5, 1/R! = 0.006: (a) subcritical flow 
( F =  0.75), (b) supercritical flow ( F =  1.5); with the second-order correction (-), without the 
correction (------). 
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10 

WXO) 
0.7044 
2.8865 
4.4934 
5.8605 
7.0859 
8.2143 
9.2704 

10.2697 
1 1.2227 
12.1370 
13.0181 

L'XO) N 
1.9157 11 

-2.3463 12 
-8.121 13 
- 17.55 14 

15 
16 
17 
18 
19 
20 

W X O )  
13.8704 
14.6973 
15.5015 
16.2855 
17.0510 
1 7.7997 
18.5331 
19.2521 
19.9581 
20.6517 

TABLE 1. Numerical values of some variables in equation (31). 

On the lower side of the plate, in accordance with the second-order approximation 
of the outer flow (13), it can be easily proved (in the same way as in the classical flow 
with no free surface) that we have: 

The boundary layer under the plate is not influenced by the presence of the free surface. 

5.1. Local and integrated skin friction 
The second-order approximation of the coefficient of local skin friction for the upper 
side of the plate follows from (30): 

c?)(x) = 7 y x ,  0) = jFb$ [ Wi(0) + (k ,  X) w;(O) - . ..I 
2xx 



Flow along a horizontal plate near a free surface 

1 
413 

FIGURE 7. Second-order correction for the coefficient of local skin friction: 
(a) subcritical flow ( F  = 0.75); (b) supercritical flow (F = 1 S). 

I I I 
0 I '  21 3 4' 5 '  6l 7l 8' x 

I 

FIGURE 8. Coefficient of local skin friction for I / &  = 0.0035: (a) subcritical flow ( F =  0.75), (b) 
supercritical flow (F = 1.5); with the second-order correction (-), without the correction (------). 

where we can still clearly recognize the parts due to the wave, parabolic and local 
displacement of the free surface. Some numerical values for Wk(0)  and Lk(0) are given 
in table 1, and examples of function (3 l), for subcritical and the supercritical flow, are 
presented in figure 7. The sum of this second-order correction and the first (Blasius) 
approximation is presented in figure 8. We used a higher value of R in the last example 
than that in figures 4 and 6. According to (29), this change corresponds to placing the 
plate deeper under the surface, which is to avoid a great increase in skin friction (see 
figure 6), so as to make sure we stay well in the domain of validity of the theory used. 

The second-order approximation of the coefficient of integrated skin friction : 

cannot be found by integration of (31), because of the unknown flow near the leading 
edge of the plate. The most we can do from (31) is to integrate the parts of cy' due to 
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------- 

FIGURE 9. Contour considered for the balance of momentum. 

FIGURE 10. Second-order correction for the coefficient of integrated skin friction : (a) subcritical 
flow ( F  = 0.75); (b) supercritical flow (F = 1.5). 

the wave and the parabolic disturbance. So, taking for convenience both sides of the 
plate (upper plus lower), we find 

(32) 
where D is an unknown friction force (independence of x) due to the local part of cy’ 
(also containing the possible influence of the lower side of the plate) - it is the leading- 
edge drag. 

To avoid the difficulty associated with the unknown flow for small x, the classical 
idea (Imai 1957) of balance of the momentum in a large contour containing the leading 
edge is used. The contour presented in figure 9 was chosen, and the solutions for the 
outer flow and the boundary layer obtained earlier were used. The flow on the contour 
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is known everywhere except at the free surface above the leading edge, but (as there is 
no flow through the free surface) this causes no difficulties in finding the total resistance 
of the plate. From the balance of momentum, after some calculation, the result that 
confirms (32) follows, provided that 

for subcritical flow, and 
D = ~FP'x 

(33) 

(34) 

for supercritical flow. The solution (34) may seem surprising, knowing that in the 
unbounded stream we would have 

D = $FP%, 

and it suggests that the leading-edge drag on the upper side of the plate disappears for 
supercritical flow. 

The coefficient c$)(x), from (32), (33) and (34), for subcritical flow ( F  = 0.75), and 
supercritical flow ( F  = 1.5) is presented in figure 10. By addition of this last result to 
the first-order approximation, the total coefficient of the integrated skin friction is 
found : 

1 4Fa P%F+ PFLi(0) 
1+- 

1 
Ri" R "  

c (x) = - c(o) + - c(l) == ____ 
(2Rx)T 4Rx R(l - F )  F 

and is presented in figure 11. Finally, to stress the influence of the free surface, a 
different coefficient of skin friction cFN = cF/F is introduced (this corresponds to a 
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R( x F = l  

FIGURE. 12. Coefficient of integrated skin friction as a function of Reynolds number (for water, 
x = 5, h = 0.05 m): with the second-order correction (-), without the correction (------). 

change of scale for pressure from pgh to pui, and that coefficient, as a function of 
Reynolds number for given x, is presented in figure 12. Note that this type of 
presentation (the cFLV-R diagram) is the most frequently used in practical calculations 
of plate resistance. The main results of the present theory, compared with the results 
that would be obtained for a deeply submerged plate, can be clearly recognized now. 
They are (see figure 12) a considerable increase of the resistance in the case of 
subcritical flow, a decrease of resistance in the case of supercritical flow, and an abrupt 
disturbance of flow in the transcritical region. The large changes of the resistance as the 
Froude number approaches its critical value cannot be treated by the present theory. 
Still, it gives a useful warning of the flow region where the classical ideas of 
independent analysis of the frictional and wave resistance break down. 

5.2. Lift 

The presence of the free surface causes a pressure difference on the two sides of the 
plate : 

Ap = p’(x,  0-) -p’(x,  Of) = c ~ ’ ( x ) / R ~ ,  

where the local lift coefficient c i )  was introduced. From (4b) ,  (7b) and from the results 
obtained for the outer flow (21), (22), it then follows that 

Two examples of the change of lift coefficient along the plate, one for subcritical flow 
(F = 0.75) and one for supercritical flow (P = 1.5), are presented in figure 13. It is 
interesting to note that the lift obtained has different directions for the cases of 
subcritical and supercritical flow. Although the phenomenon that the horizontal plate 
below the free surface could produce a lift force is known (see Vanden-Broeck & Dias 
1991), here we have a new situation. In contrast to the inviscid flow of Vanden-Broeck 
& Dias, the symmetry of the analysed flow is disturbed and consequently the lift force 
produced entirely by the effects of viscosity. 
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FIGURE. 13. Coefficient of local lift for 1/Rf = 0.006: (a) subcritical flow (F = 0.75); (b) supercritical 
flow ( F =  1.5). 

6.  Conclusion 
By solving the problem of flow along a semi-infinite horizontal plate under a free 

surface by the method of matched asymptotic expansions, as the first-order 
approximation we obtained a flow with no free surface-boundary layer interaction. 
This result is consistent with Froude’s method for determining the resistance by 
superimposing the effects of friction and waves, and it shows this classical approach in 
a new light, as the first term of the singular perturbation method used. It could be 
understood as a theoretical proof (at least for the problem studied here) of Froude’s 
intuitive idea. It also gives the error incorporated in this classical method. It is of the 
order of omitted terms, that is 0(1/&). 

The second-order approximation gives the free surface-boundary layer interaction. 
In the outer flow, free-surface disturbances caused entirely by the effects of the viscosity 
were obtained. These disturbances have different forms for subcritical and supercritical 
regimes of flow. For the subcritical regime only, the effect of viscosity induces a gravity 
wave of small amplitude that spreads far downstream. The amplitude of this wave 
increases as the Froude number rises to its critical value, and there (in the transcritical 
flow regime) the presence of only a slight viscosity causes abrupt changes in the flow 
field. 

The presence of the free surface, on the other hand, changes the flow in the boundary 
layer (on the upper side of the plate only), increasing the resistance in the case of 
subcritical flow, and decreasing it in the case of supercritical flow, all compared with 
the values for the unbounded stream. And that seems to be the most significant effect 
of boundary layer-free surface interaction. In the transcritical regime, as in the outer 
flow, a slight change of viscosity produces large changes in the boundary-layer flow. 
There, the classical methods cannot give even an approximate solution, so there 
Froude’s old idea of the independent analysis of waves and friction breaks down. 

Finally, the present theory predicts a vertical force (the lift) that would, as a result 
of the disturbed symmetry of the flow, act on the submerged plate. 
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discussions in connection with this research. 
The author is very grateful to Professor Vladan D. Djordjevic for many helpful 
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